Archive for the ‘artikel’ Category

Indonesia merupakan salah satu negara dengan jumlah gunung apinya yang terbesar di dunia. Kira-kira 179 gunung api yang terdapat di negeri ini dan 129 diantaranya masih aktif sampai sekarang. Karena hal inilah maka hampir setiap tahun paling sedikit satu gunung api melakukan erupsinya.

Aktivitas gunung merupakan pencerminan dari aktivitas magma yang terdapat di dalam bumi.

Aktivitas Volkanik

Aktivitas volkanik pada umumnya digambarkan sebagai proses yang menghasilkan gambaran yang menakjubkan, atau kadang menakutkan dari suatu bentuk struktur kerucut yang secara periodik melakukan erupsinya. Erupsi dari gunung api ini kadang –kadang merupakan letusan yang sangat gebat (eksplosif), tetapi kadang-kadang berlangsung dengan tenang. Faktor utama yang mengontrol macam erupsi gunung api adalah komposisi magma, temperatur magma dan kandungan gas yang terdapat dalam magma. Faktor-faktor tersebut sangat mempengaruhi mobilitas dari magma , atau sering disebut viskositas (kekentalan) magma. Semakin kental magma, semakin sulit magma untuk mengalir.

Komposisi kimia magma telah diuraikan pada bab sebelumnya dengan klasifikasi batuan beku. Satu faktor utama yang membedakan antara bermacam-macam batuan beku dan juga antara macam magma asala ialah kandungan unsur silika (SiO2). Magma pembentuk batuan beku basaltik mengandung kira-kira 50% silika. Batuan beku granitik mengandung sekitar 70% silika, sedang batuan beku menengah mengandung sekitar 60% silika. Jadi dapat dikatakan bahwa viskositas magma sangat berhubungan dengan kandungan silikanya. Semakin tinggi kandungan silikanya, maka magma semakin viskos dan aliran magma akan semakin lambat. Hal ini disebabkan karena molekul-molekul silika terangkai dalam bentuk rantai yang panjang, walaupun belum mengalami kristalisasi. Akibatnya, karena lava basaltik mengandung silika yang rendah, maka lava basaltik cenderung bersifat encer dan mudah mengalir, sedangkan lava granitik relatif sangat kental dan sulit mengalir walaupun pada temperatur tinggi.

Tabel. Bermacam-macam sifat magma karena perbedaan komposisi.

Sifat Magma Basaltik Andesitik Granitik
Kandungan silika Kecil (+50%) Menengah (+60%) Tinggi (+70%)
Viskositas Rendah Menengah Tinggi
Kecenderungan Membentuk Lava Tinggi Menengah Rendah
Kecenderungan Membentuk Piroklastik Rendah Menengah Tinggi
Titik Lebur Tinggi Menengah Rendah

 

Kandungan gas dalam magma juga akan berpengaruh terhadap mobilitas dari magma. Keluarnya gas dari magma menyebabkan magma menjadi semakin kental. Keluarnya gas ini dapat pula menyebabkan tekanan yang cukup kuat untuk keluarnya magma melalui lubang kepundan. Pada waktu magma bergerak naik ke atas mendekati permukaan pada gunung api, tekanan pada bagian magma yang paling atas akan berkurang. Berkurangnya tekanan akan mengakibatkan lepasnya gas dari magma dengan cepat. Pada temperatur tinggi dan tekanan yang rendah, memungkinkan gas untuk mengembangkan volumenya sampai beberapa kali dari volumenya mula-mula. Magma basaltik yang kandungan gasnya cukup besar, memungkinkan gas tersebut untuk keluar melalui lubang kepundan gunung api dengan relatif mudah. Keluarnya gas tersebut dapat membawa lava yang disemburkan sampai bermeter-meter tingginya. Sedangkan pada magma yang kental, keluarnya gas tidak mudah, tetapi gas tersebut akan berkumpul pada kantong-kantong dalam magma yang menyebabkan tekanan meningkat besar sekali. Tekanan yang besar ini akan dikeluarkan dengan letusan yang hebat dengan membawa material yang setengah padat dan padat melalui lobang kawah gunung api. Jadi besarnya gas yang keluar dari magma akan sangat mempengaruhi sifat erupsi gunung api. (lebih…)

Bahan galian adalah semua bahan atau subtansi yang terjadi dengan sendirinya di alam dan sangat dibutuhkan oleh manusia untuk berbagai keperluan industrinya. Bahan tersebut dapat berupa logam maupun non logam, dan dapat berupa bahan tunggal ataupun berupa campuran lebih dari satu bahan.

Proses terbentuknya endapan bahan galian adalah komplek dan sering lebih dari satu proses yang bekerja bersama-sama. meskipun dari satu jenis bahan, misalnya logam, kalau terbentuk oleh proses yang berbeda maka akan menghasilkan tipe endapan yang berbeda pula. Contohnya adalah endapan bijih besi, endapan ini dapat dihasilkan oleh proses diferensiasi magmatik oleh larutan hidrotermal, oleh proses sedimentasi ataupun oleh proses pelapukan. Tiap-tiap proses akan menghasilkan endapan bijih besi yang berbeda-beda baik dalam mutu, besarnya cadangan, maupun jenis mineral-mineral ikutannya.

Diantara tenaga-tenaga geologi yang membentuk endapan bahan galian, maka air memegang peranan yang dominan. Di dalam peranannya, air dapat dalam bentuk uap air, air magmatik yang panas, air laut, air sungai, air tanah, air danau maupun air permukaan. Disamping air, maka temperatur, reaksi-reaksi kimia, sinar matahari, metamorfisme, tenaga-tenaga arus dan gelombang, juga merupakan faktor-faktor pembentuk endapan bahan galian.

Mengenal dan mengetahui proses-proses yang dapat membentuk endapan bahan galian ini akan sangat membantu dalam pencarian, penemuan dan pengembangan bahan galian.

Tabel. Proses dan pembentukan jenis deposit

Proses Deposit yang dihasilkan
1. Konsentrasi magmatik Deposit magmatik
2. Sublimasi

Sublimat

3. Kontak metasomatisme Deposit kontak metasomatik
4. Konsentrasi hidrotermal Pengisian celah-celah terbuka

Pertukaran ion pada batuan

5. Sedimentasi Lapisan-lapisan sedimenter

Evaporit.

6. Pelapukan Konsentrasi residuil

Placer.

7. Metamorfisme Deposit metamorfik
8. Hidrologi Air tanah, garam tanah, endapan caliche.

 

1. Konsentrasi magmatik

Beberapa dari mineral yang terdapat dalam batuan beku banyak yang mempunyai nilai ekonomis, tetapi pada umumnya konsentrasi terlalu kecil untuk dapat diproduksi secara komersial, oleh karena itu diperlukan suatu proses konsentrasi untuk dapat mengumpulkan bahan-bahan tersebut dalam suatu deposit yang ekonomis. Konsentrasi tersebut terjadi pada saat batuan beku masih berupa magma, karenanya disebut konsentrasi oleh proses magmatik. Perkecualian pada intan, dimana tidak diperlukan konsentrasi, tetapi suatu kristal tunggal saja sudah cukup berharga.

Deposit bahan galian sebagai hasil endapan proses magmatik ini memiliki ciri-ciri adanya hubungan yang dekat dengan batuan beku intrusif dalam atau intrusif menengah. Konsentrasi magmatik dapat diklasifikasikan sebagai berikut :

a. Magmatik awal :

–          Kristalisasi tanpa konsentrasi : intan

–          Kristalisasi dan pemisahan : khron, platina

b. Magmatik akhir :

–          Akumulasi dan atau injeksi larutan residual : besi titan, platina, titan, khron.

–    Akumulasi dan pemisahan larutan : beberapa tipe deposit nikel dan tembaga.

–    Pegmatit.

Hasil atau produk dari proses magmatik dapat dibagi menjadi 4 jenis, yaitu logam tunggal (native metal), oksida, silfisa dan batu mulia (gemstone).

Contoh logam tunggal : Platina, Emas, Perak, Besi-Nikel.

Contoh oksida : Besi (magnetit, hematit), Besi-titan (magnetit bertitan), Titan (ilmenit), Khrom (kromit), Tungsten (wolframit).

Contoh sulfida : Nikel-tembaga (kalkopirit), Nikel (pentlandit, molibdenit).

Contoh batu mulia : Intan, Garnet (almandit), Peridotit.

 

2. Sublimasi

Proses sublimasi merupakan proses yang tidak begitu berarti dalam pembentukan bahan galian, tetapi memang ada bahan galian yang terbentuk oleh proses ini.

Proses sublimasi menyangkut perubahan langsung dari keadaan gas atau uap menjadi keadaan padat, tanpa melalui fase cair. Proses ini berhubungan erat dengan kegiatan gunung berapi dan fumarol, tetapi sublimat yang dihasilkan sering jumlahnya tidak cukup banyak untuk dapat ditambang secara menguntungkan. Belerang adalah bahan galian yang terjadi sebagai akibat proses sublimasi, yang secara lokal sering cukup menguntungkan untuk ditambang. Disamping belerang sering juga dapat dijumpai garam-garam klorida dari besi, tembaga, seng dan garam-garam dari logam alkali lainnya, tetapi umumnya relatif sangat kecil untuk dapat ditambang secara menguntungkan. (lebih…)


NIKEL LATERIT

Batuan induk bijih nikel adalah batuan peridotit. Menurut Vinogradov batuan ultra basa rata-rata mempunyai kandungan nikel sebesar 0,2 %. Unsur nikel tersebut terdapat dalam kisi-kisi kristal mineral olivin dan piroksin, sebagai hasil substitusi terhadap atom Fe dan Mg. Proses terjadinya substitusi antara Ni, Fe dan Mg dapat diterangkan karena radius ion dan muatan ion yang hampir bersamaan di antara unsur-unsur tersebut. Proses serpentinisasi yang terjadi pada batuan peridotit akibat pengaruh larutan hydrothermal, akan merubah batuan peridotit menjadi batuan serpentinit atau batuan serpentinit peroditit. Sedangkan proses kimia dan fisika dari udara, air serta pergantian panas dingin yang bekerja kontinu, menyebabkan disintegrasi dan dekomposisi pada batuan induk.

Pada pelapukan kimia khususnya, air tanah yang kaya akan CO2 berasal dari udara dan pembusukan tumbuh-tumbuhan menguraikan mineral-mineral yang tidak stabil (olivin dan piroksin) pada batuan ultra basa, menghasilkan Mg, Fe, Ni yang larut; Si cenderung membentuk koloid dari partikel-partikel silika yang sangat halus. Didalam larutan, Fe teroksidasi dan mengendap sebagai ferri-hydroksida, akhirnya membentuk mineral-mineral seperti geothit, limonit, dan haematit dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur cobalt dalam jumlah kecil.

Larutan yang mengandung Mg, Ni, dan Si terus menerus kebawah selama larutannya bersifat asam, hingga pada suatu kondisi dimana suasana cukup netral akibat adanya kontak dengan tanah dan batuan, maka ada kecenderungan untuk membentuk endapan hydrosilikat. Nikel yang terkandung dalam rantai silikat atau hydrosilikat dengan komposisi yang mungkin bervariasi tersebut akan mengendap pada celah-celah atau rekahan-rekahan yang dikenal dengan urat-urat garnierit dan krisopras. Sedangkan larutan residunya akan membentuk suatu senyawa yang disebut saprolit yang berwarna coklat kuning kemerahan. Unsur-unsur lainnya seperti Ca dan Mg yang terlarut sebagai bikarbonat akan terbawa kebawah sampai batas pelapukan dan akan diendapkan sebagai dolomit, magnesit yang biasa mengisi celah-celah atau rekahan-rekahan pada batuan induk. Dilapangan urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering).

Faktor-faktor yang mempengaruhi pembentukan bijih nikel laterit ini adalah:

  1. Batuan asal. Adanya batuan asal merupakan syarat utama untuk terbentuknya endapan nikel laterit, macam batuan asalnya adalah batuan ultra basa. Dalam hal ini pada batuan ultra basa tersebut: – terdapat elemen Ni yang paling banyak diantara batuan lainnya – mempunyai mineral-mineral yang paling mudah lapuk atau tidak stabil, seperti olivin dan piroksin – mempunyai komponen-komponen yang mudah larut dan memberikan lingkungan pengendapan yang baik untuk nikel.
  2. Iklim. Adanya pergantian musim kemarau dan musim penghujan dimana terjadi kenaikan dan penurunan permukaan air tanah juga dapat menyebabkan terjadinya proses pemisahan dan akumulasi unsur-unsur. Perbedaan temperatur yang cukup besar akan membantu terjadinya pelapukan mekanis, dimana akan terjadi rekahan-rekahan dalam batuan yang akan mempermudah proses atau reaksi kimia pada batuan.
  3. Reagen-reagen kimia dan vegetasi. Yang dimaksud dengan reagen-reagen kimia adalah unsur-unsur dan senyawa-senyawa yang membantu mempercepat proses pelapukan. Air tanah yang mengandung CO2 memegang peranan penting didalam proses pelapukan kimia. Asam-asam humus menyebabkan dekomposisi batuan dan dapat merubah pH larutan. Asam-asam humus ini erat kaitannya dengan vegetasi daerah. Dalam hal ini, vegetasi akan mengakibatkan: • penetrasi air dapat lebih dalam dan lebih mudah dengan mengikuti jalur akar pohon-pohonan • akumulasi air hujan akan lebih banyak • humus akan lebih tebal Keadaan ini merupakan suatu petunjuk, dimana hutannya lebat pada lingkungan yang baik akan terdapat endapan nikel yang lebih tebal dengan kadar yang lebih tinggi. Selain itu, vegetasi dapat berfungsi untuk menjaga hasil pelapukan terhadap erosi mekanis.
  4. Struktur. Struktur yang sangat dominan yang terdapat didaerah Polamaa ini adalah struktur kekar (joint) dibandingkan terhadap struktur patahannya. Seperti diketahui, batuan beku mempunyai porositas dan permeabilitas yang kecil sekali sehingga penetrasi air sangat sulit, maka dengan adanya rekahan-rekahan tersebut akan lebih memudahkan masuknya air dan berarti proses pelapukan akan lebih intensif.
  5. Topografi. Keadaan topografi setempat akan sangat mempengaruhi sirkulasi air beserta reagen-reagen lain. Untuk daerah yang landai, maka air akan bergerak perlahan-lahan sehingga akan mempunyai kesempatan untuk mengadakan penetrasi lebih dalam melalui rekahan-rekahan atau pori-pori batuan. Akumulasi andapan umumnya terdapat pada daerah-daerah yang landai sampai kemiringan sedang, hal ini menerangkan bahwa ketebalan pelapukan mengikuti bentuk topografi. Pada daerah yang curam, secara teoritis, jumlah air yang meluncur (run off) lebih banyak daripada air yang meresap ini dapat menyebabkan pelapukan kurang intensif.
  6. Waktu. Waktu yang cukup lama akan mengakibatkan pelapukan yang cukup intensif karena akumulasi unsur nikel cukup tinggi.

Profil nikel laterit keseluruhan terdiri dari 4 zona gradasi sebagai berikut :

  1. Iron Capping : Merupakan bagian yang paling atas dari suatu penampang laterit. Komposisinya adalah akar tumbuhan, humus, oksida besi dan sisa-sisa organik lainnya. Warna khas adalah coklat tua kehitaman dan bersifat gembur. Kadar nikelnya sangat rendah sehingga tidak diambil dalam penambangan. Ketebalan lapisan tanah penutup rata-rata 0,3 s/d 6 m. berwarna merah tua, merupakan kumpulan massa goethite dan limonite. Iron capping mempunyai kadar besi yang tinggi tapi kadar nikel yang rendah. Terkadang terdapat mineral-mineral hematite, chromiferous.
  2. Limonite Layer : Merupakan hasil pelapukan lanjut dari batuan beku ultrabasa. Komposisinya meliputi oksida besi yang dominan, goethit, dan magnetit. Ketebalan lapisan ini rata-rata 8-15 m. Dalam limonit dapat dijumpai adanya akar tumbuhan, meskipun dalam persentase yang sangat kecil. Kemunculan bongkah-bongkah batuan beku ultrabasa pada zona ini tidak dominan atau hampir tidak ada, umumnya mineral-mineral di batuan beku basa-ultrabasa telah terubah menjadi serpentin akibat hasil dari pelapukan yang belum tuntas. fine grained, merah coklat atau kuning, lapisan kaya besi dari limonit soil menyelimuti seluruh area. Lapisan ini tipis pada daerah yang terjal, dan sempat hilang karena erosi. Sebagian dari nikel pada zona ini hadir di dalam mineral manganese oxide, lithiophorite. Terkadang terdapat mineral talc, tremolite, chromiferous, quartz, gibsite, maghemite.
  3. Silika Boxwork : putih – orange chert, quartz, mengisi sepanjang fractured dan sebagian menggantikan zona terluar dari unserpentine fragmen peridotite, sebagian mengawetkan struktur dan tekstur dari batuan asal. Terkadang terdapat mineral opal, magnesite. Akumulasi dari garnierite-pimelite di dalam boxwork mungkin berasal dari nikel ore yang kaya silika. Zona boxwork jarang terdapat pada bedrock yang serpentinized.
  4. Saprolite : Zona ini merupakan zona pengayaan unsur Ni. Komposisinya berupa oksida besi, serpentin sekitar <0,4% kuarsa magnetit dan tekstur batuan asal yang masih terlihat. Ketebalan lapisan ini berkisar 5-18 m. Kemunculan bongkah-bongkah sangat sering dan pada rekahan-rekahan batuan asal dijumpai magnesit, serpentin, krisopras dan garnierit. Bongkah batuan asal yang muncul pada umumnya memiliki kadar SiO2 dan MgO yang tinggi serta Ni dan Fe yang rendah. campuran dari sisa-sisa batuan, butiran halus limonite, saprolitic rims, vein dari endapan garnierite, nickeliferous quartz, mangan dan pada beberapa kasus terdapat silika boxwork, bentukan dari suatu zona transisi dari limonite ke bedrock. Terkadang terdapat mineral quartz yang mengisi rekahan, mineral-mineral primer yang terlapukkan, chlorite. Garnierite di lapangan biasanya diidentifikasi sebagai kolloidal talc dengan lebih atau kurang nickeliferous serpentin. Struktur dan tekstur batuan asal masih terlihat.
  5. Bedrock : bagian terbawah dari profil laterit. Tersusun atas bongkah yang lebih besar dari 75 cm dan blok peridotit (batuan dasar) dan secara umum sudah tidak mengandung mineral ekonomis (kadar logam sudah mendekati atau sama dengan batuan dasar). Batuan dasar merupakan batuan asal dari nikel laterit yang umumnya merupakan batuan beku ultrabasa yaitu harzburgit dan dunit yang pada rekahannya telah terisi oleh oksida besi 5-10%, garnierit minor dan silika > 35%. Permeabilitas batuan dasar meningkat sebanding dengan intensitas serpentinisasi.Zona ini terfrakturisasi kuat, kadang membuka, terisi oleh mineral garnierite dan silika. Frakturisasi ini diperkirakan menjadi penyebab adanya root zone yaitu zona high grade Ni, akan tetapi posisinya tersembunyi.

GENESA ENDAPAN NIKEL LATERIT

1. Endapan Nikel Laterit

Endapan nikel laterit merupakan bijih yang dihasilkan dari proses pelapukan batuan ultrabasa yang ada di atas permukaan bumi. Istilah Laterit sendiri diambil dari bahasa Latin “later” yang berarti batubata merah, yang dikemukakan oleh M. F. Buchanan (1807), yang digunakan sebagai bahan bangunan di Mysore, Canara dan Malabr yang merupakan wilayah India bagian selatan. Material tersebut sangat rapuh dan mudah dipotong, tetapi apabila terlalu lama terekspos, maka akan cepat sekali mengeras dan sangat kuat.

Smith (1992) mengemukakan bahwa laterit merupakan regolith atau tubuh batuan yang mempunyai kandungan Fe yang tinggi dan telah mengalami pelapukan, termasuk di dalamnya profil endapan material hasil transportasi yang masih tampak batuan asalnya.

Sebagian besar endapan laterit mempunyai kandungan logam yang tinggi dan dapat bernilai ekonomis tinggi, sebagai contoh endapan besi, nikel, mangan dan bauksit.

Dari beberapa pengertian bahwa laterit dapat disimpulkan merupakan suatu material dengan kandungan besi dan aluminium sekunder sebagai hasil proses pelapukan yang terjadi pada iklim tropis dengan intensitas pelapukan tinggi. Di dalam industri pertambangan nikel laterit atau proses yang diakibatkan oleh adanya proses lateritisasi sering disebut sebagai nikel sekunder.

2. Ganesa Pembentukan Endapan Nikel Laterit

Proses pembentukan nikel laterit diawali dari proses pelapukan batuan ultrabasa, dalam hal ini adalah batuan harzburgit. Batuan ini banyak mengandung olivin, piroksen, magnesium silikat dan besi, mineral-mineral tersebut tidak stabil dan mudah mengalami proses pelapukan.

Proses pelapukan dimulai pada batuan ultramafik (peridotit, dunit, serpentinit), dimana batuan ini banyak mengandung mineral olivin, piroksen, magnesium silikat dan besi silikat, yang pada umumnya mengandung 0,30 % nikel. Batuan tersebut sangat mudah dipengaruhi oleh pelapukan lateritik (Boldt ,1967).

Proses laterisasi adalah proses pencucian pada mineral yang mudah larut dan silika dari profil laterit pada lingkungan yang bersifat asam, hangat dan lembab serta membentuk konsentrasi endapan hasil pengkayaan proses laterisasi pada unsur Fe, Cr, Al, Ni dan Co (Rose et al., 1979 dalam Nushantara 2002).

Menurut Hasanudin,dkk, 1992, air permukaan yang mengandung CO2 dari atmosfir dan terkayakan kembali oleh material – material organis di permukaan meresap ke bawah permukaan tanah sampai pada zona pelindian, dimana fluktuasi air tanah berlangsung. Akibat fluktuasi ini air tanah yang kaya CO2 akan kontak dengan zona saprolit yang masih mengandung batuan asal dan melarutkan mineral – mineral yang tidak stabil seperti olivin / serpentin dan piroksen. Mg, Si dan Ni akan larut  dan terbawa sesuai dengan aliran air tanah dan akan memberikan mineral – mineral baru pada proses pengendapan kembali .Endapan besi yang bersenyawa dengan oksida akan terakumulasi dekat dengan permukaan tanah, sedangkan magnesium, nikel dan silika akan tetap tertinggal di dalam larutan dan bergerak turun selama suplai air yang masuk ke dalam tanah terus berlangsung. Rangkaian proses ini merupakan proses pelapukan dan pelindihan/leaching.

Pada proses pelapukan lebih lanjut magnesium (Mg), Silika (Si), dan Nikel (Ni) akan tertinggal di dalam larutan selama air masih bersifat asam . Tetapi jika dinetralisasi karena adanya reaksi dengan batuan dan tanah, maka zat – zat tersebut akan cenderung mengendap sebagai mineral hidrosilikat (Ni-magnesium hidrosilicate) yang disebut mineral garnierit [(Ni,Mg)6Si4O10(OH)8] atau mineral pembawa Ni (Boldt, 1967).

Adanya suplai air dan saluran untuk turunnya air, dalam hal berupa kekar, maka Ni yang terbawa oleh air turun ke bawah, lambat laun akan terkumpul di zona air sudah tidak dapat turun lagi dan tidak dapat menembus batuan dasar(bedrock). Ikatan dari Ni yang berasosiasi dengan Mg, SiO dan H akan membentuk mineral garnierit dengan rumus kimia (Ni, Mg) Si4O5(OH)4. Apabila proses ini berlangsung terus menerus, maka yang akan terjadi adalah proses pengkayaan supergen/supergen enrichment. Zona pengkayaan supergen ini terbentuk di zona Saprolit. Dalam satu penampang vertikal profil laterit dapat juga terbentuk zona pengkayaan yang lebih dari satu, hal tersebut dapat terjadi karena muka air tanah yang selalu berubah-ubah, terutama tergantung dari perubahan musim.

Di bawah zona pengkayaan supergen terdapat zona mineralisasi primer yang tidak terpengaruh oleh proses oksidasi maupun pelindihan, yang sering disebut sebagai zona batuan dasar (bed rock). Biasanya berupa batuan ultramafik seperti Peridotit atau Dunit.

DAFTAR PUSTAKA

  1. http://mheea-nck.blogspot.com/2010/06/genesa-nikel.html
  2. http://id.wikipedia.org/wiki/Nikel_laterit
  3. Rose et al., 1979 dalam Nushantara 2002

Aktivitas Gunung Merapi belum berhenti. Jumat pagi, ia kembali mengirim awan panas. Warga masih mengungsi. Kandidat juru kunci Merapi yang baru, Ponimin, mengatakan letusan Merapi belumlah puncaknya. Kata dia pada Jumat (29/10), “Tunggu lima-enam hari.”

Kata-kata Ponimin didasarkan pada petunjuk “kakek tua misterius”. Tentu saja, keabsahan secara ilmiah tak bisa dipertanggungjawabkan.

Mari tengok beberapa foto yang menceritakan berbagai hal seputar letusan Merapi kali ini.

Juru kunci Gunung Merapi Mbah Marijan, satu hari sebelum letusan Gunung Merapi di rumahnya di Desa Kinahrejo, Sleman, Yogyakarta, Senin (25/10). (FOTO ANTARA/Regina Safri)

Tim SAR gabungan mengevakuasi korban meninggal di kawasan Kinahrejo, Kepuharjo, Sleman, Yogyakarta, Rabu (27/10). (FOTO ANTARA/Wahyu Putro)

Sejumlah siswa SD melakukan sholat ghaib di Masjid Sabilillah, Malang, Jawa Timur, Kamis (28/10). Aksi yang diikuti sekitar 200 siswa SD tersebut untuk mendoakan arwah korban bencana Gunung Merapi dan tsunami Mentawai. (FOTO ANTARA/Ari Bowo Sucipto)

Pekerja membersihkan stupa candi Borobudur akibat abu vulkanik erupsi Gunung Merapi di Borobudur, Magelang, Jateng, Rabu (27/10). Untuk sementara waktu candi Borobudur ditutup untuk wisatawan selama proses pembersihan permukaan candi Borobudur yang diselimuti abu vulkanik. (FOTO ANTARA/Anis Efizudin)

Penduduk mengamati kerusakan akibat erupsi Gunung Merapi di Desa Kinahrejo, Kamis (28/10). (AP Photo/Binsar Bakkara)

Awan panas terlihat keluar dari puncak Gunung Merapi, diabadikan dari Sidorejo, Kemalang, Klaten, sekitar pukul 06.17 WIB Jumat (29/10). (FOTO ANTARA/Andika Betha)

Lava terlihat menyala bersama hembusan asap vulkanik dari kawah Gunung Merapi yang terlihat dari Cangkringan, Yogyakarta, Jumat (29/10) pagi. (AP Photo/Binsar Bakkara)

Yahoo  News

 

dalam dunia pertambangan spesifikasi alat berat sangat diperhitungkan dalam perkembangan dan umur panjang dari tambang itu sendiri. Kemampuan dalam memperhitungkan alat alat tambang akan memberikan keuntungan dalam keuangan tambang. Pemakaian alat alat tambang disesuaikan dengan luas area tambang, banyaknya cadangan, kebutuhan produksi, dan kebutuhan kebutuhan lain yang disesuaikan dengan metode penambangan yang dilakukan.

Berikut beberapa spesifikasi alat berat yang digunakan dalam dunia pertambangan

1. Kapasitas Damtruk. download http://www.scribd.com/doc/39800354

2. spesifikasi CAT. download  http://www.scribd.com/doc/39801679

KONVEKSI SATUAN

a. Panjang

1 inci                = 2,54 X 10-2 m                                   1 meter = 39,370 inci

1 ft                   = 12 inci                                               1 ft                   = 0,3048 meter

1 yard              = 3 ft                                                    1 yard              = 0,9144 meter

1 mile               = 5280 ft                                              1 mile               = 1,609 km

1 meter = 3,2808 ft                                           1 inchi              = 2,54cm

b. Luas

1 m2 = 10,7639 ft2 1 ft2 = 0,092903 m2

1 cm2 = 0,155 in2 1 in2 = 6,45163 cm2

1 ft2 = 144 in2 1ft2 = 929,034 cm2

1 in2 = 0,0069444 ft 2 1 m2 = 10 cm2

c. Volume

1 liter                =  0,0353154 ft3 1 liter                = 0,264178 galon

1 liter                = 61,0251 in3 1 cuft                = 28,3162 liter

1cuft                 =  7,48052 galon                                  1 meter3 = 264,17 galon

1 meter3 = 35,3134 cuft                                     1 ml = 1 cm3 = 0,061024 in

1ft3 = 7,48 galon                                         1 meter3 = 35,31 ft3

1 mtr3 = 1000 ltr

d. Massa

1 kg                 = 2,20462 1 bm                                   1 lbm                = 0,4359 kg

1 lbm                = 453,59237 gram                               1 ton                = 1000 kg

1 ounce (oz)     = 16 gram                                            1 ounce (qs)     = 25,350 gram

1 lbm                = 16 oz                                                1 lbm                = 7000 grains

1 slug               = 32,1739 lbm                                     1 gram              = 15,432 grains

1 kilo                = 1,1 troi ons                                        1 BCY             = 3,475 ton

1 lb                  = 2000 ton

e. Density/kerapatan

1 lbm/cuft         = 16,018 gr/cm3 1 kg3 = 0,06243 lbm/cuft

1 lbm/cuft         = 0,0160184 kg/m3 1 gr/cm3 = 62,428 lbm/cuft

1 lbm/cuft         = 0,0000578704 lbm/cuft3 1 gr/cm3 =0,0361275 lb/cuft

f. Tekanan

1N/m2 = 0,0000145038 psi

1 pascal pa       = 1 N/m2 1 psi                 = 6894N/m2

1 bar                = 1000000 dyne/cm2 1 pa                 = 1 kg/m dt2

1 atm                = 14,696 psi                                         1 bar                = 0,9869 atm

1 atm                = 29,9212 inhg (32o F)             1 atm                = 760 mmHg (32 F)

1 atm                = 1013250 dyne/cm2 1 atm                = 1,03323 kg/cm

1 psi                 = 0,0703067 kgf/cm2 1 atm                = 33,934 ft H2O (60O)

1 kgf/cm2 = 14,2234 psi                                       1 inHg              = 0,03342 atm

1 psi                 = 2,03601 inHg (32o F)                        1 inHg              = 0,491157 psi

1 inHg              = 33864 dyne/cm2 1 psi                 = 2,307 ft H2 O

1 atm                =1,01325 X 105 Pa                              1 lbf/ft              = 4, 882 kgr/mm2

g. Energy/panas/kerja/power

1 joule (J)         = 1 kg m2/dt2 1kj                   = 0,94783 Btu

1 Btu                = 1,05504 kj                                        1 joule              = 0,23901 calori

1 joule              = 10000000 Erg                                   1 calori = 4,184 joule

1 Btu                = 251,98 calori                         1 MeV             = 1,6022 X 10-13 J

1 Btu                = 1055,04 joule                                    1 MeV             = 3,8293 X 10-20 calori

1 kwh               = 3,6 x 106 joule                                   1 MeV/mol       = 96,48559 kj/mol

1 kwh               = 3,6 X 1013 Erg                                 1 joule              = 2,7777 x 10-2 kwh

1 Btu                = 778,16 ft-lbf                                      1 kwh               = 2615218 ft-lbf

1 watt menit      = 44,261 ft-lbf                                      1 joule              = 1 watt dt

1 Hp                = 745,701 watt                                    1 watt /jam       = 860,421 calori

1 kwh               = 1,341 Hp/jam                                    1 Hp/jam          = 2544,48 Btu

1 Hp menit       = 42,408 Btu                                        1 kwh               = 3412,19 Btu

1 Hp detik        = 550 ft-lbf                                           1 Hp menit       = 33000 ft-lbf

1 watt               =1 joule/detik                                       1 watt               = 1 km m2/dtk 3

Dalam sejarah eksplorasi telah banyak jenis bor yang dipakai. Berikut adalah penggolongan jenis bor eksplorasi :
1. Bor Tangan
Ø Bor spiral
Ø Bor bangka
2. Bor Mesin Putar
Ø Bor mesin ringan
Ø Bor inti (core drill)
Ø Bor putar biasa (rotary drill)
Ø Bor-alir balik (counterflush drill)
3. Bor Mesin tumbuk (cable tool)

Sebetulnya sulit untuk melakukan penggolongan metoda pengeboran. Alat bor tangan banyak yang dikembangkan dengan dilengkapi motor kecil, sedangkan banyak alat bor mesin yang dipasang pada truk dirancang untuk pemboran dangkal. Alat bor mesin putar berkisar dari yang portable sampai alat bor raksasa untuk eksplorasi minyak dan gas bumi.

Pemboran tangan

Metoda ini dipakai untuk eksplorasi dangkal seperti placer deposit dan residual deposit. Metoda ini digunakan pada umumnya pada tahapan eksplorasi rinci, namun adakalanya secara acak dan setempat dilakukan pada tahap eksplorasi tinjau, terutama pada subtahap prospeksi umum.
Ada 2 jenis alat ini, yaitu Bor tangan spiral (Auger drilling) dan Bor bangka (BBB).

Pemboran Spiral/Bor Spiral Auger Drilling
Seperti penarik tutup notol, diputar dengan tangan. Contoh melekat pada spiral, dicabut pada interval tertentu (tiap 30 – 50 cm).
Hanya sampai kedalaman beberapa meter saja, baik untuk residual deposit (bauxite, lateritic nickel) dan sebagainya.

Pemboran Bangka/Bor Bangka (BBB)
Suatu alat bor tangan dikembangkan di Indonesia. Suatu alat selubung (casing) diberi platform, di atas mana beberapa orang bekerja. Pada prinsipnya sama dengan bor spiral dan tumbuk. Batang bor terdiri dari pipa masif yang disambung-sambung, dengan berbagai bit :
1. Spiral
2. Senduk
3. Pahat/bentuk pahat (dihubungkan)
Pengambilan contoh dalam hal yang ditumbuk dengan bailer. Sambil bor berjalan, dengan gerakan putar dan tumbuk, casing secara otomatis menurun, karena beban orang di atas flatform.
Metoda ini dipakai untuk eksplorasi dangkal, seperti placer deposit dan residual deposit. Ada 2 jenis alat

ini, yaitu Bor tangan spiral (Auger drilling) dan Bor bangka (BBB).

Pengamatan Dan Perekaman Data Geologi
Data geologi yang didapatkan dari pemboran tangan jarang berupa batuan, tetapi pada umumnya berupa tanah atau batuan lapuk, dan sedimen lepas. Contoh yang didapatkan bukan merupakan contoh yang utuh (undisturbed sample), tetapi conto yang terusik (disturbed sample). Ketelitian lokasi kedalaman conto tergantung pula dari jenis matabor yang digunakan.
Conto dari bor Spiral berupa tanah/lapukan batuan yang melilit pada spiral, dan mewakili selang kedalaman setiap kali batang bor dimasukkan sampai ditarik kembali, sehingga selang kedalamannya dapat diatur, apakah setiap 50 cm atau setiap meter, tetapi maksimal tentu sepanjang spiral.
Conto dari matabor sendok lebih terancam pencampuran, sedangkan yang menggunakan bumbung dengan katup lebih mewakili kedalaman yang tepat. Matabor ini lebih banyak digunakan untuk sedimen lepas, dan setiap conto mewakili selang kedalaman dari mulai batang dimasukkan sampai ke pencabutan.
Pada sistem bor Bangka, conto yang diambil lebih terpercayya karena penggunaan pipa selubung yang terus menerus, mengurangi pencampuran dari guguran dinding bor.

Perekaman Data
Pada umumnya data berupa litologi, serta batas-batasnya dan dapat dinyatakan dalam penampang berkolom atau profil yang dapat pula disebut sebagai log. Selain itu data kekerasan kualitatif dapat dicatatkan pula, demikian pula data muka air tanah yang dijumpai.

Pemboran Mesin putar

Ada berbagai macam jenis mesin bor putar, dari yang portable sampai pemboran raksasa seperti pada pemboran minyak yang dapat mencapai kedalaman beberapa kilometer. Ada berbagai jenis, dari mulai packsack (dapat diangkat di atas punggung) sampai bor besar harus dipreteli atau diangkat di truck.
Alat pemboran (yang disebut drilling-rig) dinilai dari kemampuannya untuk mencapai kedalaman, kemampuan pengambilan conto batuan dan kemampuan menentukan arah. Selain itu juga kemampuan bergerak di medan merupakan salah satu hal diperhatikan. Mesin-mesin pemboran putar ini mempunyai prinsip yang sama, namun berdasarkan kemampuannya dapat dibagi sebagai berikut :
Ø Bor mesin ringan (portable drilling rig)
Ø Bor mesin inti (diamond drilling rig)
Ø Bor mesin rotari (rotary drilling rigs)
Ø Bor mesin alir-balik (counterflush drilling rig)

Prinsip operasi mesin pemboran putar
Pada prinsipnya pemboran mesin putar mempunyai prinsip yang sama, yaitu :
1. Lubang dalam formasi dibuat oleh gerakan putar dari pahat untuk mengeruk batuan dan menembus dengan suatu rangkaian batang bor yang berlobang (pipa).
2. Rangkaian pipa bor disambungkan pada mesin sumber penggerak dengan berbagai macam alat

transmisi, seperti kelly dan rotary table, chuck ataupun langsung.
3. Sumber penggerak (mesin bensin, diesel dan sebagainya) atau dengan perantaraan kompresor/motor listrik.
4. Pelumas/pendingin (air, lumpur, udara). Cairan pelumas dipompakan lewat pipa, keluar lewat pahar bor kembali lewat lobang bor di luar pipa (casing) atau sebaliknya.
5. Pompa sebagai penggerak/penekan cairan pelumas.
6. Pipa/batang di atas tanah ditahan/diatur dengan menggantungkannya pada suatu menara/derrick dengan sistem katrol atau dipandu lewat suatu rak (rack) untuk keperluan menyambungnya atau mencabut serta melepaskannya dari rangkaian.
7. Untuk memperdalam lubang bor rangkaian pipa bor ditekan secara hidrolik atau mekanik maupun karena bebannya sendiri.
8. Conto batuan hasil kerukan mata bor didapatkan sebagai :
a. Serbuk atau tahi bor (drill-cuttings) yang dibawa ke permukaan oleh lumpur bor atau air pembilas. Serbuk penggerusan batuan dibawa oleh air pembilas ke permukaan sambil mendinginkan mata bor.
b. Inti bor (drill core) yang diambil melalui bumbung pengambil inti (core barrel).
9. Untuk pengambilan inti mata bor yang digunakan bersifat bolong di tengah sehingga batuan berbentuk cilinder masuk ke dalamnya dan ditangkap oleh core barrel. Mata bor ini biasanya menggunakan gigi dari intan atau baja tungsten.
10. Bumbung inti (core barrel) diangkat ke permukaan
a. Dicabut dengan mengangkat seluruh rangkaian batang bor ke permukaan setiap kali seluruh bumbung terisi.
b. Dicabut lewat tali kawat (wireline) melalui lubang pipa dengan kabel).
11. Pipa selubung penahan runtuhnya dinding lubang bor (casing) dipasang setiap kedalaman tertentu tercapai, untuk kemudian dilanjutkan dengan matabor yang berukuran kecil (telescoping). Pipa selubung dipasang untuk mengatasi adanya masalah seperti masuknya air formasi secara berlebihan (water influks), kehilangan sirkulasi lumpur pemboran karena adanya kekosongan, dalam formasi, atau lemahnya lapisan yang ditembus.

Dalam mendesain program pemboran dan memilih jenis alat bor harus diperhatikan :
1. Kapasitas kedalaman (tergantung dari) :
a. Besanya kekuatan mesin sumber pengerak yang dinyatakan dengan Tenaga Kuda (HP).
b. Kekuatan alat penyangga atau menara serta derek untuk menarik beban rangkaian sampai kedalaman yang dituju.
c. Besarnya garis tengah pipa bor sesuai dengan besarnya inti yang diminta.
d. Kekuatan pompa untuk dapat menyalurkan lumpur sampai kedalaman yang dituju.
2. Mobilitas, dapat bergerak sendiri (skids, truck) atau kemungkinan untuk dipreteli atau/dan diangkat dengan tenaga manusia ataupun dengan helicopter.
3. Kemampuan pemboran miring.
4. Keperluan dan besarnya inti yang diminta.
5. Perolehan inti (core recovery) (tergantung dari jenis core barrel)
Peralatan Mesin bor

Mata Bor :
a. Macam-macam, terdiri dari intan, baja, dan bentuk, termasuk kadang-kadang untuk tanpa pengambilan inti.
b. Ukuran mata bor : AX, BX sampai NX, sesuai dengan corebarrel.
Bumbung Inti (Corebarrel) :
Berbagai jenis dan ukuran :
a. Ukuran sesuai mata bor
b. Jenis :
1. Double-tube core-barrel
2. Triple-tube core-barrel (recovery faktor lebih dari 90%)
a. Dengan batang bor
b. Dengan tali-kawat (Wire-line)
Pipa bor dan Selubung :
1. Berbagai ukuran
2. Berbagai jenis logam
Menara Bor : Tergantung tujuan kedalaman akhir pemboran serta kenampakannya maka mesin pemboran dilengkapi suatu menara untuk mengendalikan pipa bor yang berupa sistim rak, kaki tiga sederhana maupun derrek.
Cara Penekanan :
1. Mekanis (dongkrak)
2. Hidraulis
3. Bobot rangkaian pipa
Sumber Tenaga Penggerak :
1. Diesel
2. Bensin
3. Pneumatic (compressor)
4. Listrik
Besar/kecilnya sumber penggerak menentukan kapasitas kedalaman.

Sistem pembilas :
Pembilasan dapat dilakukan dengan udara, air maupun lumpur.
Pemboran dengan udara (air drilling) : untuk daerah-daerah yang sulit air, ataupun pemboran didalam terowongan dapat dipertimbangkan penggunaan udara sebagai pembilas/pendingin matabor, dalam hal mana disiapkan mesin compressor.
Pemboran dengan air atau lumpur : untuk ini harus dipersiapkan mesin pompa dengan kapasitas tekan dan penyedotan lumpur pemboran yang sesuai dengan kedalaman yang dituju. Selain itu diperhatikan jarak dari sumber air yang memerlukan sistim pompa dan rangkaian pipa air untuk penyaluran, maupun penggunaan truk tangki air. Lumpur biasanya dipakai bentonit yang diperdagangkan secara komersial. Kekentalan dari lumpur dapat diatur dengan menentukan berat jenisnya.
Penggolongan Mesin Bor Putar

Mesin Bor Ringan (Portable Drilling Rig)

Khas dari pemboran ini selain mudah diangkut secara manual adalah pada umumnya menggunakan topdrive dengan motor bakar kecil (2 tak) yang ikut turun naik dengan turun/naiknya batang bor yang dipandu oleh rel atau rack. Tekanan pada matabor dapat ditingkatkan dengan menyuruh orang mendudukinya (awak mesin bor 20-26).
Alat bor ini dapat dipreteli dalam bahagian-bahagian kecil dan dapat diangkut oleh orang secara manual. Kapasitas alat bor ini hanya maksimum 50 meter, banyak digunakan untuk pemboran seismik (shot holes) dan sering merupakan rakitan sendiri dengan menggunakan mesin pompa. Laju tembus adalah 30-40 m/hari, relatif sangat murah. Pengambilan inti tidak dimungkinkan. Biaya $5.90/hari
Termasuk alat bor kecil dengan topdrive ini adalah yang dipasang pada truck, dengan memasangi rak (rel) yang memandu batang bor, dimana morot penggeraknya dipasang pada ujung atas batang bor, dan mesin bergeser ikut dengan turunnya dengan batang bor. Dengan topdrive ini pemboran miring dimungkinkan secara terbatas dengan memiringkan raknya.
Berbagai jenis/merk pemboran :
Bor Mesin Portable
a. Packsack (kapasitas 10 meter), dapat diangkut seorang diri
b. Koken
c. Rakitan lokal

Mesin Pemboran Inti (Diamond Drilling Rigs)

Alat pemboran ini adalah alat standart dan yang paling populer untuk eksplorasi cebakan mineral. Nama Diamond Drilling Rig digunakan karena alat ada yang paling banyak dipakai untuk pengintian (coring) yang menggunakan matabor dari intan.
Mesin ini berukuran relatif kecil dan dipasang pakai roda atau batang luncur (skids), ditarik dengan bulldozer, kendaraan 4-wheel drive atau ditarik dengan winch pada tempat yang sulit dijangkau, atau digantung dengan slung di bawah helicopter, atau juga dapat dipreteli menjadi bahagian-bahagian/komponen kecil dan dapat dipikul secara manual.
Gerakan putar dari mesin ditransmisikan pada pipa bor dengan chuck, dan oleh karenanya dapat membor ke semua arah, termasuk ke atas (dari terowongan). Untuk pengoperasiannya sering dipasang kaki tiga dari pipa besi untuk mengendalikan pemasangan/pencabutan batang bor dengan menggantungkannya pada sistem katrol dengan swivel yang disambungkan pada pipa selang untuk menyalurkan cairan pembilas dari pompa lumpur.
Kelemahan dari alat bor ini adalah berkecepatan rendah, terutama sewaktu operasi pengambilan inti (coring operations).
Jenis matabor yang digunakan : blade type, roller type dan matabor intan dan tungsten-carbida. Matabor jenis bilah (Blade type) membor lebih cepat.
Palu pemukul berputar di dalam lubang (Rotary percussion downhole hammers) juga tersedia untuk formasi-formasi yang keras.
Dapat dipasangi bumbung inti jenis tripple stationary inner split tube yang ditarik talikawat.
Beberapa merk alat bor Diamond Drilling Rig :
Altas-Capco, dengan triple yang simple
Longvear dan Tone, berbagai ukuran :
1. Junior
2. Ly 24,34,38,44-(kapasitas 100 – 900 m)
Tone : U.U.5 (75 m), T.AS 70 dan lain-lain.

Mesin Bor Rotari (Rotary Drilling Rigs)

Jenis alat bor ini dinamakan demikian karena gerak putar dari sumber penggerak/mesin ditransmisikan pada batang bor dengan meja putar (rotary table), sehingga hanya dapat membor ke vertikal ke bawah.
Alat pemboran yang digolongkan jenis ini pada umumnya lebih besar dan berkekuatan lebih besar, harus dipasang pada truk dan tidak cocok untuk lokasi-lokasi yang sulit dicapai. Alat pemboran jenis ini juga termasuk pemboran untuk minyak dan gasbumi.
Pada umumnya digunakan untuk operasi tanpa pengambilan inti (noncoring operation). Kecepatan pemboran tinggi, terutama jika tidak dilakukan pengambilan inti, namun jika diperlukan bumbung inti (core barrel) dapat dipasang.

Berbagai jenis Alat Bor Rotari
Mayhew 1000 Rig; Alat ini dipasang pada truk (6 X 6 Cusromline Carrier Truck), memakai lumpur berbasis air atau udara dengan menggunakan kompressor berkapasitas rendah. Kecepatan tembusnya sangat tinggi (175 m/hari tanpa pengintian, 35 m/hari dengan pengintian).
Biaya $ 22.15/hari tanpa pengintian.
$ 103/hari dengan pengintian.
Dando 250 : Dipasang di atas traktor, yang tidak terlalu stabil sehingga memerlukan dukungan bulldozer.
Alat ini memiliki kompressor berkapasitas tinggi dan dapat dengan mudah mencapai kedalam akhir (TD) 120 m. Namun mempunyai laju tembus (penetration rate) lebih rendah (130 m/hari tanpa pengintian, 30 m/hari dengan pengintian), tetapi lebih murah atas dasar hitungan permeternya.
Biaya $ 15.60/hari tanpa pengintian.
$ 47.50/hari dengan pengintian.

Pemboran Aliran Bilas Balik (Counterflush Drill)

Air pembilas masuk dari casing, keluar melalui pipa bor, membawa conto, yang tidak tercampur dengan rontokan dari dinding lubang bor, namun untuk mendapatkan ke dalam conto ini harus memperhitungkan kecepatan tidak seteliti bor inti.

Pengambilan Conto Dan Perekaman Data Dari Lubang Bor (Drill-Hole Logging)

Tujuan utama dari pemboran eksplorasi adalah mengambil dan merekam data geologi yang ditembus lubang bor. Data ini berupa rekaman catatan hasil pengamatan pada conto batuan, khususnya litologi serta gejala geologi lainnya. Jenis conto yang didapatkan adalah :

Serbuk bor (Cuttings)
Conto ini adalah hasil kerukan dari matabor yang kemudian dibawa oleh air pembilas ke permukaan. Setap kemajuan selang kedalaman tertentu suatu conto yang diambil mewakili selang kedalaman tertentu dan dicatat. Conto ini dibersihkan dan dideskripsikan. Hasil deskripsi conto ini tidak akurat mengingat :
1. Conto tersebut harus menempuh jarak dari kedalaman sampai ke permukaan, sedang dalam waktu yang sama matabor sudah maju lebih dalam lagi. Kedalaman yang diwakili conto itu harus dikoreksi atau disetel terhadap data lain, seperti laju kecepatan pemboran atau log talikawat.
2. Conto tersebut sering tercampur dengan serbuk dari selang kedalaman yang ada di atasnya, sehingga kadangkala diketemukan lebih dari 2 jenis litologi yang berasal kedalaman yang berbeda. Untuk ini persen berbagai jenis litologi ini harus dicatat untuk mengetahui litologi mana merupakan guguran dan mana yang dari kedalaman asli. Untuk ini dapat pula dilakukan pembandingan dengan hasil tafsiran litologi dari log talikawat maupun data lain seperti laju kecepatan pemboran.
3. Conto ini merupakan serbuk, keratan atau hancuran dari batuan, sehingga hanya deskripsi tekstur dan susunan mineral yang dapat diamati, sedangkan gejala-gejala geologi seperti struktur, kekompakan dan lain-lain tidak teramati.
Pengamatan litologi dari serbuk pemboran adalah bersifat baku dalam eksplorasi minyak dan gasbumi, dan juga dilakukan pada pemboran eksplorasi batubara terutama pada selang kedalaman yang tidak dilakukan pengintian. Adakalanya dalam eksplorasi batubara tidak dilakukan pengintian yang disebut openhole, sehingga data geologi didapatkan dari penafsiran log talikawat/geofisika dan dibantu dari pengamatan conto ini. Namun pada pemboran eksplorasi cebakan mineral tidak lazim dilakukan karena lebih mengandalkan pada pengamatan conto inti dilakukan secara penuh dari permukaan sampai kedalaman akhir.

Inti bor (drill core)
Pada eksplorasi cebakan mineral termasuk batubara data geologi biasanya didasarkan atas pengamatan dan pendeskripsian conto inti bor.
Pengintian Penuh (Full Coring). Pengambilan inti dilakukan secara penuh dari permukaan sampai kedalaman akhir pemboran. Ini yang biasa dilakukan dalam eksplorasi untuk cebakan mineral.
Pengintian Setempat (Spot Coring). Pemboran dilakukan sebagai lubang terbuka (open hole) yang kemudian diikuti dengan pengintian hanya dilakukan pada selang kedalaman tertentu yang diinginkan, misalnya beberapa meter di atas zone cebakan dan beberapa meter dibawahnya. Untuk ini sering diperlukan lapisan petunjuk stratigrafi berdasarkan log geofisika dari sumur terdekat yang sengaja dibor sebagai pilot drill hole, untuk operasi ini sering dilakukan pilot and part-coring.
Pengintian Sentuh (Touch Coring). Pengintian dimulai segera setelah matabor mencapai beberapa meter di atas target pengintian (bentuk pengintian setempat yang kurang dapat dipercayai).
Pengintian Inti Terorientasi (Oriented Core Sample). Dengan menggunakan alat tertentu, dimungkinkan dimana orientasi kedudukan asli dari conto didalam tanah dapat ditentukan. Hal ini sering dilakukan untuk mempelajari kedudukan struktur geologi dari lapisan maupun dari rekahan atau jalur-jalur mineralisasi.
Perolehan Inti (Core Recovery). Dalam operasi pengambilan inti pemboran tidak selalu seluruh selang kedalaman dapat diwakili oleh panjang inti yang diperoleh. Hal ini disebabkan kemungkinan gugurnya bahagian bawah dari inti sewaktu diangkat dalam bumbung inti (core barrel). Besarnya perolehan inti (core recovery) dinyatakan dalam persen (% core recovery), dengan mengukur panjang conto inti yang diperoleh dan membandingkannya dengan panjang bumbung. Perolehan inti yang buruk dapat disebabkan karena adanya jalur-jalur retak atau keadaan batuan yang rapuh dan dapat dipakai sebagai indikator untuk keadaan struktur dari batuan, dan menggunakan bumbung inti yang diperbaiki seperti triple tube core-barrel.

Keunggulan dari conto inti pemboran adalah :
1. Pengamatan litologi lebih lengkap dan terperinci sehingga perselingan berbagai jenis litologi, dapat dideskripsi secara rinci, centimeter demi centimeter.
2. Pengamatan rinci dapat dilakukan terhadap struktur maupun tekstur batuan dalam 3-Dimensi, terutama jika menggunakan conto yang terorientasikan, misalnya adanya rekahan, urat-urat kecil, penjaluran mineral (mineral zoning), dsb.
3. Penentuan kedalaman serta selang-selang kedalaman dari berbagai batas perubahan litologi lebih baik daripada serbuk pemboran. Namun masih tetap kurang akurat jika dibandingkan dengan hasil penlogan talikawat, disebabkan kemungkinan perolehan inti yang buruk selain juga terjadinya dekompaksi seperti halnya dalam batubara.
4. Keuntungan conto inti bor ini adalah selain mendapatkan kedalam conto yang lebih teliti, juga dimungkinkan untuk dilakukan uji kualitas yang berkisar luas (wide range of quality test), untuk menentukan sifat-sifat keteknikan batuan, misalnya kekuatan lantai dan atap dari cebakan (batubara) dan batuan penutup (overburden rocks).

Keburukan dari pengambilan conto inti adalah :
1. Operasi pengambilan inti bor sangat memperlambat operasi pemboran, terutama jika tidak menggunakan wireli corebarrel.
2. Harus menggunakan matabor dari intan atau baja tungsten yang lebih mahal daripada matabor jenis lainnya.
Secara keseluruhan pemboran inti jauh lebih mahal dan lebih lambat dari operasi pemboran lainnya, sehingga harus benar-benar diperhitungkan dalam menentukan taktik eksplorasi. Keunggulan jenis data yang diperoleh harus diperhitungkan terhadap biaya yang harus dikeluarkan.

Pemprosesan Dan Penyimpanan Inti Bor

Inti bor dicuci dan dikeringkan, kemudian dipatahkan meter demi meter. Setelah dipatahkan setiap meter maka batang-batang inti disimpan dalam peti kayu/aluminium yang dirancang khusus, dan disusun sedemikian rupa sehingga atas bawahnya jelas, serta kedalamannya diperlihatkan dengan tanda-tanda yang ditulikan dengan spidol pada penyekat antar inti. Waktu dilakukan pengamatan harus hati-hati untuk menempatkan setiap conto dalam urutan, arah dan susunan yang sama.
Batang inti yang akan dianalisa di laboratorium, seperti selang yang termineralisasi inti batuan ini

dibelah (split) menjadi 2 (1 dipakai untuk essay, 1 untuk dokumentasi). Conto inti untuk analisa laboratorium harus diambil dari inti yang telah dibelah ini. Penanganan conto inti ini harus dijaga supaya tidak terkontaminasi, terutama yang diperuntukan assay mineralisasi logam. Dalam hal batubara conto inti untuk dianalisa di laboratorium harus segera dibungkus dengan kertas parafin yang kedap udara, untuk menjada kelembaban aslinya (moiture content). Untuk setiap conto yang akan dianalisa di laboratorium perlu dicatat kode nama/nomor lubang bor dan kedalamannya.

Pencatatan/Perekaman Data Bor : Penlogan Lubang Bor
Ada dua cara mencatat atau merekam data geologi yang dihasilkan pemboran :

Penlogan Visual (Visual Logging)
Penlogan visual dilakukan terhadap pengamatan dan deskripsi litologi dari conto serbuk pemboran dan dari conto inti bor. Jika dilakukan pengeboran inti penuh (full core drilling) penlogan dilakukan hanya dari pengamatan conto inti, sedangkan jika dilakukan spot-coring maka hanya bagian yang tidak diinti pengamatan dari serbuk bor yang dicatat. Pencatatan dilakukan dalam kolom-kolom kertas panjang yang disebut Log Pemboran (drilling-log) dan jika khusus berdasarkan inti saja disebut Log Inti (Core-log). Data geologi pada Log Inti tidak terbatas pada deskripsi litologi saja, tetapi menyangkut struktur, mineralisasi dan sebagainya. Selain data geologi juga dicatat data teknis lainnya, seperti data laju kecepatan pemboran, data perolehan inti (core-recovery), keadaan air pembilas, pergantian matabor, selang pengambilan inti-bor, titik-titik penempatan pipa selubung (casing) serta tanggalnya. Setiap jenis catatan pengamatan diberi kolom tersendiri, dan sedapat mungkin dalam bentuk simbol grafis. Khususnya jenis litologi diberi kolom yang di isi simbol grafis, laju pemboran dengan kurva, perolehan inti dalam bentuk kolom sempit yang memperlihatkan % inti terhadap kedalaman. Struktur geologi digambarkan pada kolom litologi maupun dicatat dalam kolom tersendiri, demikian juga selang-selang mineralisasi, jenis mineralisasi serta estimasi persen juga dicatat. Sebetulnya tidak ada standard bentuk log yang baku, tergantung dari jenis cebakan yang dijadikan obyek pemboran, maupun juga tergantung perusahaannya masing-masing. Sering kolom khusus disediakan untuk mencatatkan hasil analisa geokimia atau ‘assays’.
Dewasa ini dengan komputerisasi, data yang direkam diusahakan dalam format digital maupun alfanumerik yang mudah diinputkan dalam suatu database yang disimpan sebagai file dalam disket atau tape, dan setiap waktu dapat dengan mudah dibuatkan log grafis dengan mencetaknya pada rol kertas (paper log print-out), maupun diproses menjadi peta atau penampang geologi.
Log Visual ini sering dikombinasi dengan log Talikawat menjadi log Komposit.

Penlogan Talikawat (Wire-Line Logging)
Penlogan talikawat dewasa ini sudah sangat lumrah dilakukan untuk pemboran inti, terutama untuk batubara. Jenis-jenis log yang dapat dilakukan bisa dibagi dalam :
Ø Penlogan Geofisika (Geophysical Logging)
Ø Penlogan Citra (Imaging, hasil dari pemotretan kamera yang diturunkan ke dalam lubang pada tali serat optik dan dapat merekam citra visual sekeliling lubang bor)
Ø Log orientasi lubang sumur (yang menunjukkan arah dari lubang sumur dalam derajat kemiringan dan azimuth)
Sejak pertengahan tahun tujuh-puluhan penlogan geofisika untuk lubang pemboran kecil telah dikembangkan. Terutama untuk eksplorasi batubara.
1. Penlogan geofisika lebih teliti dalam penentuan kedalaman dari target pemboran terutama dalam hal lapisan batubara daripada penlogan visual dari inti pemboran karena kemungkinan dekompaksi dan pendapatan inti yang buruk.
2. Penafsiran litologi lebih baik dari pengamatan serbuk bor atau pendapatan inti yang buruk.
3. Korelasi antar lubang bor bersifat jauh lebih oojektif daripada log visual.
4. Untuk eksplorasi batubara log geofisika dapat digunakan untuk mengestimasi parameter kualitas batubara.

Jenis-jenis log yang dipakai terutama untuk batubara adalah :
1. Log Radioaktif (gamma, neutron, densitas)
2. Log Listrik (Resistivitas/SP)
3. Log Kaliper

Density Log
LSD ; baik untuk korelasi
HRD ; informasi optimum untuk ketebalan batubara
BRD ; kompromi antara LSD dan HRD
Natural Gamma Log
Menunjukkan kadar lempung
Neutron Log
Merespon terhadap hidrogen, karbon dan kelembaban total moisture, derajat porositas (yang membedakan batupasir dari serpih)
Caliper Log
Jenis log ini memungkinkan untuk memisahkan batuan kompeten dari yang tidak kompeten. Log ini juga digunakan untuk menentukan kelayakan suatu lapisan batubara pada lokasi tertentu untuk dapat dilakukan pengintian, berdasarkan atas derajat keretakannya yang diperlihatkan oleh garis tengah dari lubang bor yang menembus lapisan tersebut.

Dalam eksplorasi batubara log densitas banyak dipergunakan. Ini disebabkan karena :
Ø Density log dapat menentukan secara teliti selang kedalaman dan ketebalan lapisan batubara yang ditembusnya.
Ø Density log menghasilkan penentuan kerapatan batuan (density determination) dan dengan demikian menunjukkan kualitas dari lapisan. Kemudian density dikorelasikan dengan lubang bor yang telah diambil intinya dan perkiraan kadar abu dapat diekstrapolasikan dengan lubang bor terbuka yang dilog. Kombinasi dari gamma alami, log densitas dan log neutron memberikan jalan untuk korelasi lapisan batubara serta lapisan sedimen yang menyelubunginya.

PEMBORAN MESIN TUMBUK (PERCUSSION DRILLING)

Jenis mesin pemboran ini sudah jarang dipakai lagi dalam eksplorasi. Batuan dipecah dengan pahat yang ditumbuk, dan conto diambil dengan bailer atau drive sampler. Conto yang didapat tidak murni.
Pemboran dengan jenis ini umumnya digunakan dalam eksplorasi dasar pada soil, gravel, endapan pasir. Dimana sebagian besar batuan yang dihasilkan telah mengalami gangguan, karena proses pemborannya dilakukan dengan menumbuk tanpa menimbulkan moment putar. Hasil dari pemboran tersebut kemudian dibawa ke laboratorium.
Ada berbagai jenis mesin bor perkusi ini, antara lain yang disebut :
Ø Cable Tool Drilling Rig
Ø Hammer Drill atau Wagon Drill
Ø Downhole Hammer Drilling Rig
Ø Hammer Drilling Rig with Drive Sampler

Alat Bor Tumbuk Talikawat (Cable Tool Rig)
Alat cable tool rig, yang juga disebut churn drilling rig adalah alat bor yang paling tua yang digunakan untuk pemboran minyak maupun eksplorasi mineral, dan kini masih dipakai. Alat ini bentuknya sederhana yang terdiri suatu menara, berbentuk segitiga atau bentuk lain yang pada puncaknya dilengkapi dengan sistim katrol. Pada katrol ini dibentangkan talikawat baja yang disambungkan dengan suatu mesin motor penggerak lewat suatu roda gila sehingga memberikan gerakan turun naik pada ujung talikawat di bawah menara bor ini. Pada ujung talikawat ini digantungkan suatu mata bor berupa pahat yang dilengkapi batang logam sebagai pemberat diatasnya. Penetrasi pada formasi dilakukan dengan menarik talikawat ke atas oleh mesin penggerak, dan kemudian melepasnya sehingga pahat menumbuk formasi di bawahnya. Setelah gerakan ini dilakukan beberapa kali, maka pahat diganti dengan suatu alat pengambil conto yang disebut bailer suatu tabung atau bumbung baja yang dibawahnya diberi sistim katup. Dengan menjatuhkannya bailer ini ke dalam lubang maka hancuran batuan ataupun sedimen lepas masuk ke dalam tabung dan terperangkap oleh katup dan dapat diangkat untuk memperolehnya. Air sering dimasukkan ke dalam lubang bor untuk membersihkan lubang, tetapi tidak dalam tekanan yang terlalu tinggi (maksimum 100 l/menit).

Alat Bor Tumbuk Biasa
Ada beberapa macam alat bor tumbuk ini yang terutama digunakan untuk batuan keras dalam operasi pertambangan. Alat ini biasanya dipasang di atas suatu truk atau traktor, dan sangat mudah dioperasikan dalam segala arah sudut.

Hammer Drill (Bor Palu)
Mesin bor yang juga disebut Wagon Drill (Chaucier dan Morer, 1987) itu terdiri dari palu yang bergerak vertikal dan dipasang sepanjang suatu peluncur (slide) yang dipasang pada suatu kendaraan seperti truk atau traktor. Palu ini memukul-mukul suatu rangkaian batang bor yang pada ujungnya dipasangi suatu matabor. Jenis Wagon Drills yang ringan (Atlas BVB) dapat mencapai kedalaman rata-rata 30 meter dan maksimum 50-60 meter. Jenis Wagon Drills yang besar (Altas Roc 601) rata-rata 70 sampai 100 meter. Conto yang didapatkan adalah serpihan batuan yang ditiup oleh udara yang dikompresikan melalui pipa bor, dan ditangkan diluar oleh alat khusus yang disebut cyclone sample chamber.

Kelemahan dari Wagon Drill adalah perolehan conto yang kecil (5kg/m), karena diameter lubang yang didapatkan adalah 40-50 mm.

Down-Hole Hammer Drill (Alat Bor Palu Dalam Lubang)
Pada alat bor ini palu didapatkan langsung dipasang di atas drive sampler, berbentuk suatu silinder yang bergerak turun naik secara lancar (smooth) dan digerakan oleh udara tertekan dari compressor melalui pipa bor. Mata bor disini dapat pula melakukan gerak rotasi atau putar. Kedalaman rata-rata yang dapat dicapai alat ini adalah 80=100 meter, tetapi dapat pula dirancang untuk mencapai kedalaman 300-1000 meter, dengan menggunakan pipa selubung (casing). Diameter lubang yang dibuat adalah 65-170 mm, sehingga dapat perolehan conto (sample recovery) yang lebih besar daripada Wagon Drill. Namun biayanya 3 sampai 4 kali biaya pemboran permeter daripada Wagon Drill. Hammer Drill jenis ini diklasifikasikan sebagai bor palu ringan (Light Hammer Drill, Ingersoll type).
Bor Tumbuk dengan Drive Sampler
Perkembangan dari bor tumbuk atau percussiun drilling adalah pemasangan apa yang disebut drive sampler sebagai pengganti matabor. Alat bor ini hanya cocok dipergunakan untuk lapisan tanah atau sedimen lepas. Alat ini berupa sepotong pipa dengan ujungnya terbuka dan tajam. Tabung baja ini mempunyai bentuk dengan panjang yang berlainan, kurang lebih 91,44 cm dan diameternya (bagian luar) 7,62 cm. Alat ini dilengkapi dengan cincin (ring) yang gunanya untuk penyesuaian bila diameternya akan mencapai 12,7 cm. Sedangkan pada sampler bagian atas terdapat lubang untuk lewat air/lumpur pemboran, yang dilengkapi dengan katub pengatur, katub ini gunanya untuk :
Ø Masuknya lumpur pemboran pada saat diangkat
Ø Mencegah cebakan udara dan air dalam tabung yang akan menjadi pengganggu naiknya conto atau rusaknya conto batuan.
Katup bola pengatur tidak selalu effektif penuh, karena kadang-kadang hal itu akan menyumbat katub dan menahan untuk tetap terbuka. Drive sampler ini yang bertindak sebagai alat bor, mempunyai dinding dengan ketebalan 5 inci, alat ini diselubungi dengan pipa pelindung (casing). Ada beberapa macam peralatan drive sampler, alat ini telah dikembangkan untuk berbagai macam soil, yaitu dengan menggunakan dinding sampler yang tipis. Membuat dinding yang setipis mungkin ini dimaksudkan untuk pengendalian sisipan conto batuan. Banyak juga drive sampler telah dikembangkan untuk berbagai mekanisme guna mendapatkan conto batuan sebaik mungkin.

Pengamanan :
Walaupun bor tumbuk ini biasanya dipasang pada suatu truk atau traktor, namun ada kalanya mesin langsung dipasang diatas tanah. Hal-hal yang perlu diperhatikan selama pekerjaan pemboran yaitu :
Landasan mesin bor, landasan ini harus dipersiapkan dengan letak yang betul. Landasan ini perlu stabil mesinnya bisa selalu dalam keadaan mantap dan dapat menahan mesin bor serta peralatannya. Juga memudahkan operator bekerja dengan leluasa. Ukuran landasanya itu minimum 3,5 X 3,5 meter.
Demikian pula pada pemboran dasar sungai, untuk memudahkan dan keamanan, maka sesuai jaminan perlu dibuat “andang-andang” (scaffolding), dalam suatu rencana pekerjaan pemboran dasar sungai dan ini berarti penambahan biaya maupun waktu.

Keunggulan Bor Tumbuk
Bor tumbuk mempunyai keunggulan karena dapat menembus bongkah dalan cebakan pasir/kerikil dengan cepat dengan memecahkannya, conto yang didapatkan dalam drive sampler atau bailer cukup akurat dan relatif murah dan peralatannya cukup sederhana.
Pekerjaan ikutan sehubngan dengan pemboran tumbuk memberikan keunggulan sebagai berikut :
Ø Dapat mengukur Bulk Density dari tanah, lempung (clay), pasir (sand), kerikil (gravel) dan lain-lain, dalam keadaan asli di lapangan.
Ø Dapat mengukur koefisien perbandingan antara tanah terpadat dengan yang tak terpadat langsung di lapangan.

Pengamatan dan Perekaman Data Geologi
Diskripsi litologi hasil pemboran
Setiap conto yang diambil dari bailer harus langsung diamati seketika itu juga mutlak dikerjakan oleh geologist di lapangan maupun kemudian diverifikasi di laboratorium. Mengingat conto hasil pemboran tumbuk pengamatan khusus meliputi :
a. Mengenai berbagai jenis batuan yang mudah pecah dan yang mudah menyambung kembali.
v Litologi (warna, tekstur dsb), sifat kelunakan, kepadatan dan perlapisan.
v Banyaknya air yang terkandung dalam batuan tersebut.
v   Keterangan mengenai batuan dari seluruh yang pecah seperti, sifat kebulatan, prosentase jenis batuan dari keseluruhan volume jenis batuan itu, juga keterangan dari sudut petrografi.
v   Keterangan-keterangan mengenai keistimewaan setiap lapisan batuan seperti kadar humus dalam suatu lapisan batuan, perubahan warnanya dan lain-lain.
v Pengambilan macam-macam batuan tersebut seperti tempat pengambilan batuan, susunan struktur batuan yang rusak dan struktur batuan yang tidak rusak.
b. Mengenai berbagai jenis batuan yang keras sampai agak keras dalam suatu lapisan batuan.
v Litologi (warna, tekstur dsb), dari fragmen batuan dan semen batuan. Keterangan mengenai zat-zat kecil yang terkandung dalam batuan seperti susunan mineralogi, bentuk dan ukuran maupun letaknya, perubahan-perubahan yang mungkin ada.
v Tingkat kekerasan batuan dan prosentase pengambilan dari lubang bor.
v Tingkat kerusakan dan lain-lain.

Perekaman/Catatan Data Pemboran
Setelah diadakan pengamatan batuan seperti ini kemudian dilakukan pencatatan, catatan ini harus akurat, nyata, jelas, sistematis dalam format yang telah ditentukan serta bisa dijadikan dokumen yang dijamin kelamaannya. Pencatatan dilakukan pada format yang sudah tersedia yang disebut log, yang dan pencatatan dilakukan pada kolom-kolom dan kedalaman yang bersangkutan.
Pemerian batuan hasil pemboran ini akan menghasilkan catatan ringkas yang sebagian akan dimasukkan dalam Boring record, kadangkala disebut Drilling Record atau Drilling Log.

Penyimpanan Conto (Sample Storage)
Demikian pula tentang penyimpanan conto (sample) hasil pemboran, diberi kolom-kolom sesuai dengan pengambilan sample sehingga kelak bila diadakan pemerian ulang tidak akan terjadi kericuhan.

Pada proses pengeboran peranan lumpur bor (drilling mud) sangat penting, karena lumpur pengeboran ini memiliki beberapa fungsi, yaitu :
a. Mengangkat serbuk bor ke permukaan, hal ini sangat penting sebab juka serbuk pengeboran tidak terangkat ke permukaan maka dapat menyebabkan buntunya saluran pengeboran dan akhirnya dapat menyebabkan terjepitnya pipa bor.
b. Mendinginkan dan melumasi pahat/biit dan rangkaian pipa bor; proses pendinginan dan pelumasan pada sebuah kegiatan pengeboran tidak boleh diabaikan sebab jika proses ini diabaikan dapat mengakibatkan lelehnya biit atau rangkaian pipa akibat gesekan dengan bidang bor, terlebih lagi jika kita menggunakan kecepatan rotasi tinggi dan dibarengi dengan pelumasan yang tidak baik maka hal ini akan lebih mempercepat lelehan bit.
c. Mengontrol tekanan formasi; dengan lumpur bor yang baik maka tekanan formasi dapat terkontrol dengan baik, oleh karena itu perbandingan antara lumpur dengan air harus seimbang, lumpur tidak boleh terlalu kental atau terlalu encer.
d. Mencegah runtuhnya dinding lubang bor; dengan adanya lumpur bor yang baik dapat membantu penyanggan dinding sehingga keruntuhan dinding dapat kita hindari.
e. Melapisi dinding lubang bor dengan kerak lumpur; dengan teknologi yang ada kita dapat membuat lumpur bor yang dapat mengering pada dinding lubang bor sehingga dapat mengurangi longsor pada dinding bor.
f. Menahan serbuk bor dan material-material pemberat dalam bentuk suspensi bila sirkulasi atau pemboran dihentikan sementara; pada proses pengeboran jika terjadi sesuatu hal yang mengakibatkan sirkulasi lumpur terpaksa harus dihentikan. Kita tidak perlu khawatir terhadap serbuk bor yang mengendap sebab lumpur yang baik akan dapat menahan serbuk pengeboran dalam bentuk suspensi, tetapi jika lumpur bor yang kita gunakan kurang baik kemungkinan material pemberat dan serbuk bor mengendap cukup besar dan kemungkinan terjepitnya rangkaianpun menjadi besar pula.
g. Mengurangi beban rangkaian pipa bor dan selubung yang ditanggung oleh menara/rig; pengeboran yang dilakukan tanpa lumpur. Bor yang baik, misalnya lumpur bor yang digunakan terlalu encer hal ini akan menyebabkan proses pelumasan kurang berjalan baik adan juga fungsi lumpur bor sebagai pembantu penyanggaan beban yang ditanggung oleh rig juga akan berkurang, oleh karena itu pemilihan lumpur bor harus benar-benar diperhatikan.
h. Untuk media loging I; maksudnya adalah penyampelan dengan bentuk sampel seperti log (silinder).
Berdasarkan bahan dasarnya lumpur bor dapat dibedakan menjadi tida macam, yaitu :
1. Lumpur dasar air tawar (fresh water base mud)
2. Lumpur dasar air asin (salt water base mud)
3. Lumpur dasar air minyak (oil water base mud)
Selama proses pengeboran berlangsung tentunya tidak terlepas dari masalah, masalah yang mungkin timbul selama pengeboran diantaranya :
a. Semburan liar, semburan liar biasanya terjadi pada pengeboran minyak bumi. Hal ini terjadi saat bor kita menembus batauan pengurung gas sehingga gas menekan lumpur bor ke atas dan gas akhirnya keluar permukaan. Jika pada saat pengeboran terjadi sembur liar sebaiknya kita segera meninggalkan lokasi pengeboran untuk menghindari hal-hal yang tidak diinginkan.
b. Runtuh dinding, runtuhnya dinding dapat disebabkan oleh kondisi batuan yang kurang stabil atau dapat pula disebabkan oleh penggunaan lumpur yang kurang tepat.
c. Hilang lumpur (mud loss) :
– Lumpur di dalam lubang sumur hilang atau masuk ke dalam lapisan sebagian atau seluruhnya.
– Dapat terjadi karena berat jenis lumpur bor terlalu besar, sehingga tekanan lumpur lebih besar dari tekanan lapisan.
– Hilangnya lumpur dapat diikuti oleh blow out.
d. Sloughing shale, dinding sumur disekitar lapisan shale (serpih) mengembang sehingga menyempitkan atau menyumbat lubang bor, pengembangan lapisan shale terjadi karena shale bereaksi dengan air yang berasal dari lumpur pengeboran, kejadian ini dapat mengakibatkan terjepitnya rangkaian pipa bor.
e. Bit leleh, lelehnya bit atau mata bor yang dapat terjadi akibat kurang lancarnya proses pelumasan atau putarannya terlalu tinggi.
f. Rod putus, putusnya rod dapat diakibatkan dari sloughing shale yang mengakibatkan rod terjepit sedangkan putaran tidak dihentikan.
g. Rangkaian pipa yang terjepit, hal ini dapat terjadi jika viskositas diperbesar, tekanan fluida besar atau dapat pula disebabkan oleh sloughing shale.

I. Pendahuluan

A. Latar Belakang

Menjamin tersedianya air tanah yang bersih di kota-kota besar merupakan hal paling sulit diwujudkan dalam rangka memenuhi target global water security 2015.Kenapa demikian???

Tak banyak yang menyadari barangkali bahwa tanah yang kita pijak makin lama makin turun. Tak banyak yang tahu mungkin bahwa salah satu penyebabnya adalah penyedotan air tanah secara berlebihan. Dan tak banyak yang peduli sepertinya untuk menyelamatkan air, terutama yang berasal dari tanah.Tingginya laju pembangunan Kota Metropolitan serta banyaknya sumur bor menjadi salah satu penyebab mempercepat penurunan permukaan tanah yang tingkat kekerasannya masih rendah.

Sebenarnya banyak sekali faktor yang mempengaruhi ketersedian air tanah,namun sebagian kalangan ataupun media masa hanya memandang dari satu sisi saja.Contohnya kegiatan penambangan,Mungkin argumen sebagian kalangan atau media masa tersebut ada benarnya,memandang bahwa kegiatan penambangan dapat merusak lingkungan khususnya air tanah.Tapi mereka tidak mengetahui latar belakang perusahaan itu,bisa saja perusahaan tersebut bergerak dibidang pertambangan.Namun bila pemimpin perusahaan tersebut backgroundnya bukan dari tambang sudah pasti penambangan serta rekalamasi pada daerah tersebut tidak berjalan  sebagai mana mestinya.

B. Pengertian Umum

  • Air tanah

Adalah semua air yang terdapat pada lapisan pengandung air (akuifer) di bawah permukaan tanah, termasuk mata air yang muncul di permukaan tanah. Peranan air tanah semakin lama semakin penting karena air tanah menjadi sumber air utama untuk memenuhi kebutuhan pokok hajat hidup orang banyak (common goods), seperti air minum, rumah tangga, industri, irigasi, pertambangan, perkotaan dan lainnya, serta sudah menjadi komoditi ekonomis bahkan dibeberapa tempat sudah menjadi komoditi strategis. Diperkirakan 70% kebutuhan air bersih penduduk dan 90% kebutuhan air industri berasal dari air tanah.

simulasi dari terbentuknya air tanah

Air yang berhasil meresap ke bawah tanah akan terus bergerak ke bawah sampai dia mencapai lapisan tanah atau batuan yang jarak antar butirannya sangat-sangat sempit yang tidak memungkinkan bagi air untuk melewatinya. Ini adalah lapisan yang bersifat impermeabel. Lapisan seperti ini disebut lapisan aquitard (gambar sebelah kanan bersifat impermeabel yang sulit diisi air, sementara yang kiri bersifat permeabel yang berisi air).

Air yang datang kemudian akan menambah volume air yang mengisi rongga-rongga antar butiran dan akan tersimpan disana. Penambahan volume air akan berhenti seiring dengan berhentinya hujan.

Air yang tersimpan di bawah tanah itu disebut air tanah. Sementara air yang tidak bisa diserap dan berada di permukaan tanah disebut air permukaan. Dalam suatu laporan disebutkan bahwa dalam kondisi pasca hujan, wilayah bogor mampu menyerap air hujan hingga 60% dari total curah hujan. Sementara wilayah Jakarta hanya mampu menyerap 20% saja. Lalu kemana sisanya? Tentunya jadi air permukaan yang menjelma menjadi banjir.

Permukaan air tanah disebut water table, sementara lapisan tanah yang terisi air tanah disebut zona saturasi air.

Model aliran airtanah itu sendiri akan dimulai pada daerah resapan airtanah atau sering juga disebut sebagai daerah imbuhan airtanah (recharge zone). Daerah ini adalah wilayah dimana air yang berada di permukaan tanah baik air hujan ataupun air permukaan mengalami proses penyusupan (infiltrasi) secara gravitasi melalui lubang pori tanah/batuan atau celah/rekahan pada tanah/batuan.

Dalam perjalananya aliran airtanah ini seringkali melewati suatu lapisan akifer yang diatasnya memiliki lapisan penutup yang bersifat kedap air (impermeabel) hal ini mengakibatkan perubahan tekanan antara airtanah yang berada di bawah lapisan penutup dan airtanah yang berada diatasnya. Perubahan tekanan inilah yang didefinisikan sebagai airtanah tertekan (confined aquifer) dan airtanah bebas (unconfined aquifer). Dalam kehidupan sehari-hari pola pemanfaatan airtanah bebas sering kita lihat dalam penggunaan sumur gali oleh penduduk, sedangkan airtanah tertekan dalam sumur bor yang sebelumnya telah menembus lapisan penutupnya.

Hubungan Intrusi Air Laut Dengan Penurunan Muka Air Tanah (Water Level)

Pada dekade terakhir ini telah terjadi pertumbuhan penduduk yang sangat pesat didunia,dan hal tersebut menyebabkan eksploitasi air bawah tanah terus meningkat dengan pesat..Fenomena ini telah menyebabkan dampak kualitas dan kuantitas air bawah tanah.

Intrusi diartikan sebagai perembesan air laut ke daratan, bahkan sungai sungai. Suatu kawasan yang awalnya air tanahnya tawar kemudian berubah menjadi lagang dan asin seperti air laut. Intrusi dapat berakibat rusaknya air tanah yang tawar dan berganti menjadi asin. Penyebabnya, antara lain penebangan pohon bakau, penggalian karang laut untuk dijadikan bahan bangunan dan kerikil jalan. Pembuatan tambak udang dan ikan yang memberikan peluang besar masuknya air laut jauh ke daratan.

Apabila keseimbangan hidrostatik antara air bawah tanah tawar dan air bawah tanah asin didaerah pantai terganggu,maka akan terjadi pergerakan air bawah tanah asin/air laut ke arah darat dan terjadilah intrusi air laut.

Terminologi intrusi pada hakekatnya hanya setelah ada aksi,yaitu pengambilan air bawah tanah yang mengganggu keseimbangan hidrostatik.adanya intrusi air laut ini merupakan permasalahan pada pemanfaatan air bawah tanah di daerah pantai,karena berakibat langsung pada mutu air bawah tanah.

Air bawah tanah yang sebelumnya layak digunakan untuk air minum,karena adanya intrusi air laut,maka terjadi gradasi mutu,sehingga tidak layak lagi digunakan untuk air minum.

Penyusupan air asin ini dapat terjadi antara lain akibat :

  1. Penurunan muka air tanah atau bidang pisometrik di daerah pantai
  2. Pemompaan air bawah tanah yang berlebihan didaerah pantai
  3. Masuknya air laut kedaratan melaui sungai, kanal, saluran, rawa, ataupun cekungan lainnya

  1. A. Hukum Ghyben-Herzberg

Hubungan antara air laut dengan air bawah tanah tawar pada akuifer pantai pada keadaan statis dapat diterangkan dengan hukum Ghyben – Herzberg.Dengan adanya perbedaan berat jenis antara air laut dengan air bawah tanah tawar,maka bidang batas (interface) tegantug pada keseimbangan keduanya.hubungan antara air asin dengan air bawah tanah tawar pada akuifer bebas di daerah pantai.

Persamaan tersebut hanya berlaku :

  • Muka air bawah tanah (bid.pisometrik) berada di atas muka laut
  • Muka air bawah tanah (bid.pisometrik) miring ke arah laut

Pada kondisi dinamis ,hukum Ghyben – Herzberg tidak sepenuhnya berlaku

PENGARUH TEKTONIK & PEMOMPAAN DALAM SKALA BESAR SEBAGAI FAKTOR PENURUNAN MUKA AIR TANAH

1. Pemompaan Air Tanah Dalam Skala Besar

Tingginya laju pembangunan Kota Metropolitan serta banyaknya sumur bor di kota-kota besar, mempercepat penurunan permukaan tanah yang tingkat kekerasannya masih rendah. Demikian penegasan Kasubdis Bidang Pengendalian Pertambangan DKI Agoeng W. Berdasarkan pemantauan Dinas Pertambangan DKI, laju penurunan tanah di daerah Jakarta Utara mulai tahun 1999 antara 2-8 Cm pertahun, Jakarta Barat 2,2 Cm pertahun, Jakarta Timur 1,5-3 Cm pertahun, dan Jakarta Selatan sekitar 2 Cm pertahun.

Peta penurunan permukaan tanah di DKI antara tahun 1982-1999 yang disusun Dinas Pertambangan menunjukkan, akibat beban bangunan dan faktor teknis, geologi kawasan Jakarta Utara dan Jakarta Barat bagian utara merupakan kawasan dengan zona penurunan terparah, yakni antara 100-200 Cm.

Selain itu, Ahli Geologi Dinas Pertambangan DKI Bowo Saroso mengatakan, penyedotan air tanah berlebihan dengan pompa juga menjadi salah satu penyebab turunnya permukaan tanah. Antara 17,5-18 persen penurunan tanah disebabkan oleh adanya sumur bor, sisanya (sekitar 82 persen) disebabkan oleh kondisi alam, beban bangunan, serta kendaraan. Disebutkan, pengambilan air tanah dengan pompa berkapasitas lebih dari 100 meter kubik (m3) sangat dikhawatirkan mempercepat laju penurunan tanah. Seperti diketahui, saat ini 40 persen permukaan tanah DKI sudah berada di bawah permukaan laut seperti Penjaringan, Pluit, dan sebagian Tanjung Priok, sehingga apabila terjadi pasang air laut ditambah dengan curah hujan yang tinggi, banjir di Jakarta tak dapat dielakkan.

Kondisi muka air tanah tampa pemompaan

Pengaruh Tektonik

Lapisan kulit bumi dengan ketebalan 100 km mempunyai temperatur relatif jauh lebih rendah dibanding dengan lapisan dalamnya (mantel dan inti bumi) sehingga terjadi aliran konveksi dimana massa dengan temperatur tinggi mengalir ke daerah temperatur rendah atau sebaliknya.

Teori aliran konveksi ini sudah lama berkembang untuk menerangkan pergeseran lempeng tektonik yang menjadi penyebab utama terjadinya gempa bumi tektonik. Disamping itu kita kenal juga gempa vulkanik, gempa runtuhan, gempa imbasan dan gempa buatan. Gempa vulkanik disebabkan oleh desakan magma ke permukaan, gempa runtuhan banyak terjadi di pegunungan yang runtuh, gempa imbasan biasanya terjadi di sekitar dam karena fluktuasi air dam, sedangkan gempa buatan adalah gempa yang dibuat oleh manusia seperti ledakan nuklir atau ledakan untuk mencari bahan mineral. Skala gempa tektonik jauh lebih besar dibandingkan dengan jenis gempa lainnya sehingga efeknya lebih banyak terhadap bangunan.

Contoh hubungan keterdpatan air tanah dengan struktur geologi adalah

  • Potensi air tanh di daerah sedimen terlipat atau terpatahkan umumnya kecil hal ini mengingat batuan penyusunnya berupa serpih, napal, atau lempung yang bersifat kedap air. Batupasir jika ada umumnya berupa sisipan dan sangat kompak karena berumur tua dan telah mengalami proses tektonik kuat sehingga sedikit kemungkinannya laipasan batupasir tua dapat bertindak sebagai akifer yang baik
  • Potensi air tanah pada daerah gunung api dijumpai akifer-akifer dengan system rekahan yang banyak dijumpai pada lava.Rekahan tersebut terbentuk oleh kekar-kekar yang terjadi akibat proses pada pembekuaan ataupun akibat tektonik/vulkanik
  • Terbentuknya mata air rekahan (fracture artesian spring) adalah mata air yang dihasilkan oleh akifer tertekan yang terpotong oleh struktur impermeable.

Siklus Hidrologi

Berdasarkan posisinya, Indonesia terletak disepanjang jalur-jalur pertemuan lempeng yang menyebabkan wilayahnya mengalami kondisi tektonik yang sangat kuat. Kondisi–kondisi tersebut memberikan deformasi terhadap satuan-satuan geologinya. Untuk itu dengan mengetahui zonasi struktur kita dapat mengetahui apakah struktur tersebut merupakan zonasi impermeable atau merupakan nilai permebilitas lapisan batuan.

Simulasi penurunan muaka air tanah akibat gempa

Gempa akan membentuk crack atau rekahan-rekahan.Pada saat gempa terjadi goyangan-goyangan yang dibeberapa tempat justru terlihat air yang menyembur. Namun setelah goyangan gempa reda banyak dilaporkan sumur-sumur kering, dan mata air yang sudah tidak mengeluarkan air lagi.

Mata-air (sumur) banyak yang menjadi kering.Hal ini disebabkan karena ada crack atau rekahan yang membuat air tanah dangkal “jatuh” ke lapisan dibawahnya, terjadi equilibrium dimana ada air yang masuk ke zona lain yang bertekanan lebih rendah (tinggi muka airnya lebih rendah). Lihat gambar nomor 2

PENUTUP

Sebagai penutup tulisan ini dapat dikemukakan beberapa hal sebagai berikut :

  1. Penurunan muka air tanah yang dapat dipengaruhi akibat gempa yang mengakibatkan rekahan – rekahan pada permukaan tanah sehinggan air tanah tersebut turun atau meresap ke lapisan tanah di bawahnya.
  2. Penurunan muka air tanah akibat pemompaan dalam skala besar,sehingga mengakibatkan penurunan yang drastis pada water level tersebut.
  3. Penurunan muka air tanah akibat eksploitasi lahan.Dengan maraknya pembukaan lahan perumahan serta gedung-gedung perkantoran,mempersempit area infiltrasi air hujan yang turun sehingga,debit air tanah yang diambil dalam skala besar tidak balance (tidak seimbang antara air yang diambil dengan debit infiltrasi hujan kedalam tanah.

Dengan bemikian dapat kita simpulkan,bahwa penurunan muka air tanah sangat erat hubungannya dengan intrusi air laut.Sehingga bila dibiarkan berkelanjutan akan terjadi ”land subsdance” (amblesan tanah).

Untuk masalah penurunan muka air tanah ini,telah banyak metoda yang di terapkan,seperti pembuatan Sumur resapan dan lobang biopori. Tetapi dapt kita lihat di kota-kota besar masing kurangnya sosialisasi pada warga kota.